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1 Compactness and Analysis

1.1 Compact subsets of Hausdorff spaces

Here is the theorem we promised to prove last time.

Theorem 1.1. If X is Hausdorff, and A ⊆ X is compact, then A is closed.

Proof. We will show that X \A is open. Let x ∈ X \A, and choose z ∈ A. X s Hausdorff,
so there exist neighborhoods Uz, Vz such that x ∈ Uz, z ∈ Vz, and Uz ∩ Vz = ∅. We can
vary z to get a collection {Vz : z ∈ A} of open sets. Then {Vz ∩A} is an open cover of A.
A is compact, so A = (A∩ Vz1)∪ · · · ∪ (A∩ Vzn) for some z1, . . . , zn ∈ A. This implies that
A ⊆ Vz1 ∪ · · · ∪ Vzn = V .

Since Uzi ∩Vzi = ∅, we know that U = Uz1 ∩· · ·∩Uzn is disjoint from V . So U ∩A = ∅;
i.e. U ⊆ X \A. Also, U is open (as an intersection of finitely many open sets), and x ∈ U ,
so we have an open neighborhood of x that is contained in X \ A. Since x was any point
in X \A, we conclude that X \A is open. Hence, A is closed.

1.2 Generalizations of theorems from analysis

1.2.1 The Bolzano-Weiertrass theorem

Recall the following theorem from analysis.

Theorem 1.2 (Bolzano-Weierstrass). Every bounded sequence in R has a convergent sub-
sequence.

Given a sequence (an), we can construct the set {an : n ∈ N} ⊆ R. We can think of
the limit of a sequence as a limit point of {an} (if {an} infinite). This gives rise to a more
general topological analogue of the Bolzano-Weierstrass theorem.

Theorem 1.3 (Bolzano-Weierstrass). If X is compact, and A ⊆ X is infinite, then A has
a limit point.
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Proof. In pursuit of a contradiction, assume A has no limit points; we will show that
A must be finite. Given x ∈ X, it is not a limit point of A. So if x ∈ A, then we
can find a neighborhood Ux of x such that Ux ∩ (A \ {x}) = ∅; i.e. Ux ∩ A = {x}.
Likewise, if x /∈ A, we can find a neighborhood Ux of x such that Ux ∩ (A \ {x}) = ∅; i.e.
Ux ∩ A = ∅. Then {Ux} is an open cover of X, so X = Ux1 ∪ · · · ∪ Uxn , as X is compact.
But A = A ∩ X = (A ∩ Ux1) ∪ · · · (A ∩ Uxn). We had that |A ∩ Uxi | ≤ 1 for each i, so
|A| ≤ n <∞. This is a contradiction, as A was assumed to be infinite.

1.2.2 Characterization of compactness

Theorem 1.4. If A ⊆ Rn is compact, then it is closed and bounded.

Proof. Rn is Hausdorff, so since A is a compact subset, it is closed. Since A ⊆
⋃∞

n=1Bn(0),
{A∩Bn(0)} is an open cover of A. A is compact, so A = (A∩Bn1(0))∪ · · · ∪ (A∩Bnk

(0)).
Take N = max{n1, . . . , nk}. Then A = A ∩BN (0); i.e. A ⊆ BN (0), so it is bounded.

Recall the following theorem from analysis.

Theorem 1.5. If f : [a, b]→ R is continuous, then f is bounded and attains its bounds.

In the general topological setting, this becomes the following theorem.

Theorem 1.6. If X is compact, and f : X → R is continuous, then f is bounded and
attains its bounds.

Proof. The image f(X) is compact, so f(X) is closed and bounded by the theorem we just
proved. Since f(X) is bounded and nonempty, it has a supremum S and an infimum I.
We know that S and I are limit points of f(X) (if f(X) is finite, the supremum is just one
of the points). The set f(X) is closed, so it contains its limit points. So S, I ∈ f(X); i.e.
S = f(x0) and I = f(x1) for some x0, x1 ∈ X, so f attains its bounds.

1.3 Tychonoff’s product theorem (finite version)

We want to prove the converse to the previous theorem that sats compact =⇒ clsoed and
bounded in Rn. To do that, we will establish a more general theorem about compactness
of product spaces. First, we need a lemma.

Lemma 1.1. If {Ui} is a base for the topology of a space X, then X is compact iff every
open cover C of X such that C ⊆ {Ui} has a finite subcover.

Proof. ( =⇒ ) This follows from the definition of compactness.
(⇐= ) Let C be any open cover of X, and let B be a base. We build a new open cover C′.

For each A ∈ C, A =
⋃

i Ui, where Ui ∈ B. Let C′ := {Ui ∈ B : ∃A ∈ C such that Ui ⊆ A}.
By assumption, C′ has a finite subcover {Ui1 , . . . , Uin}. For each i = 1, . . . , n, Ui ⊆ Ai

for some Ai ∈ C, so X =
⋃n

i=1 Ui ⊆
⋃n

i=1Ai ⊆ X. So
⋃n

i=1Ai = X and C has a finite
subcover.
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Theorem 1.7 (Tychonoff (finite version)). X × Y is compact iff X and Y are compact.

Proof. ( =⇒ ) We have continuous functions p1 : X × Y → X and p2 : X × Y → Y that
are surjective. So X = p1(X × Y ) and Y = p2(X × Y ) are compact.

( ⇐= ) Let C = {Ui × Vi} be an open cover of X × Y by open sets in the base of the
product topology from the definition. We will show that C has a finite subcover, and then
we will use the lemma.

If x ∈ X, then p2|{x}×Y : {x} × Y → Y is a homeomorphism. Since Y is compact, so
is {x} × Y . So there exists a subcover Cx ⊆ C such that Cx = {Ux

1 × V x
1 , . . . , U

x
nx
× V x

nx
} is

finite, and {x} × Y ⊆
⋃nx

i=1 U
x
i × V x

i .
If Ux = Ux

1 ∩ · · · ∩ Ux
nx

, then Ux × Y ⊆
⋃nx

i=1 U
x
i × V x

i . So for every x ∈ X, we get
an open set Ux ⊆ X; this makes {Ux : x ∈ X} an open cover of X. X is compact, so
X = Ux1 ∪ · · · ∪ Uxs . Then

X × Y =

s⋃
j=1

Uxj × Y =

s⋃
j=1

nxj⋃
i=1

U
xj

i × V
xj

i .

This is a finite union, so C has a finite subcover.
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