Math 142 Lecture 6 Notes

Daniel Raban

February 1, 2018

1 Compactness and Analysis

1.1 Compact subsets of Hausdorff spaces

Here is the theorem we promised to prove last time.

Theorem 1.1. If X is Hausdorff, and $A \subseteq X$ is compact, then A is closed.

Proof. We will show that $X \setminus A$ is open. Let $x \in X \setminus A$, and choose $z \in A$. X s Hausdorff, so there exist neighborhoods U_z, V_z such that $x \in U_z, z \in V_z$, and $U_z \cap V_z = \emptyset$. We can vary z to get a collection $\{V_z : z \in A\}$ of open sets. Then $\{V_z \cap A\}$ is an open cover of A. A is compact, so $A = (A \cap V_{z_1}) \cup \cdots \cup (A \cap V_{z_n})$ for some $z_1, \ldots, z_n \in A$. This implies that $A \subseteq V_{z_1} \cup \cdots \cup V_{z_n} = V$.

Since $U_{z_i} \cap V_{z_i} = \emptyset$, we know that $U = U_{z_1} \cap \cdots \cap U_{z_n}$ is disjoint from V. So $U \cap A = \emptyset$; i.e. $U \subseteq X \setminus A$. Also, U is open (as an intersection of finitely many open sets), and $x \in U$, so we have an open neighborhood of x that is contained in $X \setminus A$. Since x was any point in $X \setminus A$, we conclude that $X \setminus A$ is open. Hence, A is closed.

1.2 Generalizations of theorems from analysis

1.2.1 The Bolzano-Weiertrass theorem

Recall the following theorem from analysis.

Theorem 1.2 (Bolzano-Weierstrass). Every bounded sequence in \mathbb{R} has a convergent subsequence.

Given a sequence (a_n) , we can construct the set $\{a_n : n \in \mathbb{N}\} \subseteq \mathbb{R}$. We can think of the limit of a sequence as a limit point of $\{a_n\}$ (if $\{a_n\}$ infinite). This gives rise to a more general topological analogue of the Bolzano-Weierstrass theorem.

Theorem 1.3 (Bolzano-Weierstrass). If X is compact, and $A \subseteq X$ is infinite, then A has a limit point.

Proof. In pursuit of a contradiction, assume A has no limit points; we will show that A must be finite. Given $x \in X$, it is not a limit point of A. So if $x \in A$, then we can find a neighborhood U_x of x such that $U_x \cap (A \setminus \{x\}) = \emptyset$; i.e. $U_x \cap A = \{x\}$. Likewise, if $x \notin A$, we can find a neighborhood U_x of x such that $U_x \cap (A \setminus \{x\}) = \emptyset$; i.e. $U_x \cap A = \{x\}$. Likewise, if $x \notin A$, we can find a neighborhood U_x of x such that $U_x \cap (A \setminus \{x\}) = \emptyset$; i.e. $U_x \cap A = \emptyset$. Then $\{U_x\}$ is an open cover of X, so $X = U_{x_1} \cup \cdots \cup U_{x_n}$, as X is compact. But $A = A \cap X = (A \cap U_{x_1}) \cup \cdots (A \cap U_{x_n})$. We had that $|A \cap U_{x_i}| \leq 1$ for each i, so $|A| \leq n < \infty$. This is a contradiction, as A was assumed to be infinite.

1.2.2 Characterization of compactness

Theorem 1.4. If $A \subseteq \mathbb{R}^n$ is compact, then it is closed and bounded.

Proof. \mathbb{R}^n is Hausdorff, so since A is a compact subset, it is closed. Since $A \subseteq \bigcup_{n=1}^{\infty} B_n(0)$, $\{A \cap B_n(0)\}$ is an open cover of A. A is compact, so $A = (A \cap B_{n_1}(0)) \cup \cdots \cup (A \cap B_{n_k}(0))$. Take $N = \max\{n_1, \ldots, n_k\}$. Then $A = A \cap B_N(0)$; i.e. $A \subseteq B_N(0)$, so it is bounded. \Box

Recall the following theorem from analysis.

Theorem 1.5. If $f : [a, b] \to \mathbb{R}$ is continuous, then f is bounded and attains its bounds.

In the general topological setting, this becomes the following theorem.

Theorem 1.6. If X is compact, and $f : X \to \mathbb{R}$ is continuous, then f is bounded and attains its bounds.

Proof. The image f(X) is compact, so f(X) is closed and bounded by the theorem we just proved. Since f(X) is bounded and nonempty, it has a supremum S and an infimum I. We know that S and I are limit points of f(X) (if f(X) is finite, the supremum is just one of the points). The set f(X) is closed, so it contains its limit points. So $S, I \in f(X)$; i.e. $S = f(x_0)$ and $I = f(x_1)$ for some $x_0, x_1 \in X$, so f attains its bounds.

1.3 Tychonoff's product theorem (finite version)

We want to prove the converse to the previous theorem that sats compact \implies closed and bounded in \mathbb{R}^n . To do that, we will establish a more general theorem about compactness of product spaces. First, we need a lemma.

Lemma 1.1. If $\{U_i\}$ is a base for the topology of a space X, then X is compact iff every open cover C of X such that $C \subseteq \{U_i\}$ has a finite subcover.

Proof. (\implies) This follows from the definition of compactness.

 (\Leftarrow) Let \mathcal{C} be any open cover of X, and let \mathcal{B} be a base. We build a new open cover \mathbb{C}' . For each $A \in \mathcal{C}$, $A = \bigcup_i U_i$, where $U_i \in \mathcal{B}$. Let $\mathcal{C}' := \{U_i \in \mathcal{B} : \exists A \in \mathcal{C} \text{ such that } U_i \subseteq A\}$. By assumption, \mathcal{C}' has a finite subcover $\{U_{i_1}, \ldots, U_{i_n}\}$. For each $i = 1, \ldots, n, U_i \subseteq A_i$ for some $A_i \in \mathcal{C}$, so $X = \bigcup_{i=1}^n U_i \subseteq \bigcup_{i=1}^n A_i \subseteq X$. So $\bigcup_{i=1}^n A_i = X$ and \mathcal{C} has a finite subcover. **Theorem 1.7** (Tychonoff (finite version)). $X \times Y$ is compact iff X and Y are compact.

Proof. (\implies) We have continuous functions $p_1 : X \times Y \to X$ and $p_2 : X \times Y \to Y$ that are surjective. So $X = p_1(X \times Y)$ and $Y = p_2(X \times Y)$ are compact.

 (\Leftarrow) Let $\mathcal{C} = \{U_i \times V_i\}$ be an open cover of $X \times Y$ by open sets in the base of the product topology from the definition. We will show that \mathcal{C} has a finite subcover, and then we will use the lemma.

If $x \in X$, then $p_2|_{\{x\}\times Y} : \{x\} \times Y \to Y$ is a homeomorphism. Since Y is compact, so is $\{x\} \times Y$. So there exists a subcover $\mathcal{C}_x \subseteq \mathcal{C}$ such that $\mathcal{C}_x = \{U_1^x \times V_1^x, \dots, U_{n_x}^x \times V_{n_x}^x\}$ is finite, and $\{x\} \times Y \subseteq \bigcup_{i=1}^{n_x} U_i^x \times V_i^x$.

If $U^x = U_1^x \cap \cdots \cap U_{n_x}^x$, then $U^x \times Y \subseteq \bigcup_{i=1}^{n_x} U_i^x \times V_i^x$. So for every $x \in X$, we get an open set $U^x \subseteq X$; this makes $\{U^x : x \in X\}$ an open cover of X. X is compact, so $X = U^{x_1} \cup \cdots \cup U^{x_s}$. Then

$$X \times Y = \bigcup_{j=1}^{s} U^{x_j} \times Y = \bigcup_{j=1}^{s} \bigcup_{i=1}^{n_{x_j}} U_i^{x_j} \times V_i^{x_j}.$$

This is a finite union, so \mathcal{C} has a finite subcover.